Exam. Code : 103203
 Subject Code : 1113

B.A./B.Sc. $3^{\text {rd }}$ Semester
MATHEMATICS
\section*{Paper-I (Analysis)}

Time Allowed-Three Hours]
 [Maximum Marks-50

Note :-Do any FIVE questions selecting at least ONE question from each section. The fifth question may be attempted from any section. All questions carry equal marks.

SECTION—A

1. (a) Prove that a monotonically increasing sequence is convergent if and only if it is bounded above. Moreover it converges to l.u.b. of range.
(b) Prove that sequence defined by :

$$
x_{1}=\sqrt{7}, x_{n+1} \sqrt{7+x_{n}} \text { is convergent and }
$$

converges to positive root of :

$$
y^{2}-y-7=0
$$

2. (a) State and prove Cauchy's first theorem on limits.
(b) Prove that the sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ where $\mathrm{x}_{\mathrm{n}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \frac{1}{\mathrm{i}}$ is not convergent by showing that it is not Cauchy's sequence.

140(2119)/HH-12663

a2zpapers.com

SECTION-B

3. (a) Test the convergence and divergence of the series:

$$
\frac{2^{2}}{3^{2}}+\frac{2^{2}}{3^{2}} \frac{4^{2}}{5^{2}}+\frac{2^{2}}{3^{2}} \frac{4^{2}}{5^{2}} \frac{6^{2}}{7^{2}}+.
$$

(b) If the sequence $\left\{a_{n}\right\}$ is monotonic and converges to zero, then the alternating series $\sum_{\mathrm{n}=1}^{\infty}(-1)^{\mathrm{n}} \mathrm{a}_{\mathrm{n}}$ is convergent.
4. (a) Prove that the series $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{p}}$ is convergent if and only if $\mathrm{p}>1$.
(b) Discuss the convergence of the series :

$$
1+\frac{2 x}{3^{2}}+\frac{3^{2} x^{2}}{3!}+\frac{4^{3} x^{3}}{4!}+\ldots \ldots \ldots \infty, x>0 .
$$

SECTION-C

5. (a) Prove that every continuous function on $[\mathrm{a}, \mathrm{b}]$ is Riemann integrable on $[\mathrm{a}, \mathrm{b}]$.
(b) Define a function f on $[0, \mathrm{k}]$ where k is positive integer as follows :

$$
f(x)=\left\{\begin{array}{l}
0 \text { when } x \text { is an integer } \\
1 \text { otherwise }
\end{array}\right.
$$

Then f is Riemann integrable on $[0, \mathrm{k}]$.
6. (a) Prove that if $f(x)=\sin x, 0 \leq x \leq \pi / 2$ then f is Riemann integrable on $[0, \pi / 2]$.
(b) If m and M are g.l.b. and l.u.b. of function $f(x)$ on $[a, b]$ then show that :

$$
m(b-a) \leq \int_{\underline{a}}^{b} f(x) d x \leq \int_{a}^{\bar{b}} f(x) d x \leq M(b-a)
$$

SECTION-D

7. (a) Show that :

$$
\int_{0}^{1} x^{-\frac{1}{3}}(1-x)^{-\frac{2}{3}}(1-2 x)^{-1} d x=\frac{1 \beta\left(\frac{2}{3}, \frac{1}{3}\right)}{9^{\frac{1}{3}}}
$$

(b) Test the convergence of $\int_{0}^{\pi} \frac{\sqrt{x}}{\sin x} d x$.
8. (a) Using Gamma function evaluate :

$$
\int_{0}^{a} x^{4} \sqrt{a^{2}-x^{2} d x} .
$$

(b) Show that:

$$
\int_{0}^{\pi} \mathrm{x}^{\mathrm{m}}(\csc \mathrm{x})^{\mathrm{n}} \text { dx exist if and only if } \mathrm{n}<\mathrm{m}+1 .
$$

